Abstract Assisted Reproductive Technologies routinely utilize different culture media and oxygen (O2) concentrations to culture human embryos. Overall, embryos cultured under physiological O2 tension (5%) have improved development compared to embryos cultured under atmospheric O2 conditions (20%). The mechanisms responsible for this remain unclear. This study aimed to evaluate the effect of physiologic (5%) or atmospheric O2 (20%) tension on the microscopic ultrastructure of pre-implantation mouse embryos using Transmission Electron Microscopy (TEM). Embryos flushed out of the uterus after natural mating were used as the control. For use as the control, 2-cells, 4-cells, morulae, and blastocysts were flushed out of the uterus after natural fertilization. In vitro fertilization (IVF) was performed using potassium simplex optimized medium (KSOM) under different O2 tensions (5% and 20%) until the blastocyst stage. After collection, embryos were subjected to the standard preparative for light microscopy (LM) and TEM. We found that culture in vitro under 5% and 20% O2 results in an increase of vacuolated shaped mitochondria, cytoplasmic vacuolization and presence of multi-vesicular bodies at every embryonic stage. In addition, blastocysts generated by IVF under 5% and 20% O2 showed a lower content of heterochromatin, an interruption of the trophectodermal and inner cell mass cell membranes, an increased density of residual bodies, and high levels of glycogen granules in the cytoplasm. In conclusion, this study suggests that in vitro culture, particularly under atmospheric O2 tension, causes stage-specific changes in preimplantation embryo ultrastructure. In addition, atmospheric (20%) O2 is associated with increased alterations in embryonic ultrastructure; these changes may explain the reduced embryonic development of embryos cultured with 20% O2.

Pre-implantation mouse embryos cultured In vitro under different oxygen concentrations show altered ultrastructures / Belli, M; Rinaudo, P; Palmerini, Mg; Ruggeri, E; Antonouli, S; Nottola, Sa; Macchiarelli, G. - In: INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH. - ISSN 1660-4601. - 17:10(2020), pp. 1-17. [10.3390/ijerph17103384]

Pre-implantation mouse embryos cultured In vitro under different oxygen concentrations show altered ultrastructures

Nottola SA;
2020

Abstract

Abstract Assisted Reproductive Technologies routinely utilize different culture media and oxygen (O2) concentrations to culture human embryos. Overall, embryos cultured under physiological O2 tension (5%) have improved development compared to embryos cultured under atmospheric O2 conditions (20%). The mechanisms responsible for this remain unclear. This study aimed to evaluate the effect of physiologic (5%) or atmospheric O2 (20%) tension on the microscopic ultrastructure of pre-implantation mouse embryos using Transmission Electron Microscopy (TEM). Embryos flushed out of the uterus after natural mating were used as the control. For use as the control, 2-cells, 4-cells, morulae, and blastocysts were flushed out of the uterus after natural fertilization. In vitro fertilization (IVF) was performed using potassium simplex optimized medium (KSOM) under different O2 tensions (5% and 20%) until the blastocyst stage. After collection, embryos were subjected to the standard preparative for light microscopy (LM) and TEM. We found that culture in vitro under 5% and 20% O2 results in an increase of vacuolated shaped mitochondria, cytoplasmic vacuolization and presence of multi-vesicular bodies at every embryonic stage. In addition, blastocysts generated by IVF under 5% and 20% O2 showed a lower content of heterochromatin, an interruption of the trophectodermal and inner cell mass cell membranes, an increased density of residual bodies, and high levels of glycogen granules in the cytoplasm. In conclusion, this study suggests that in vitro culture, particularly under atmospheric O2 tension, causes stage-specific changes in preimplantation embryo ultrastructure. In addition, atmospheric (20%) O2 is associated with increased alterations in embryonic ultrastructure; these changes may explain the reduced embryonic development of embryos cultured with 20% O2.
2020
IVF; TEM; embryo; in vitro culture; oxygen concentration
01 Pubblicazione su rivista::01a Articolo in rivista
Pre-implantation mouse embryos cultured In vitro under different oxygen concentrations show altered ultrastructures / Belli, M; Rinaudo, P; Palmerini, Mg; Ruggeri, E; Antonouli, S; Nottola, Sa; Macchiarelli, G. - In: INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH. - ISSN 1660-4601. - 17:10(2020), pp. 1-17. [10.3390/ijerph17103384]
File allegati a questo prodotto
File Dimensione Formato  
Belli_Pre-implantation_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 5.24 MB
Formato Adobe PDF
5.24 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1396384
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact